Submodularity for Distributed Sensing Problems

Zeyn Saigol
IR Lab, School of Computer Science
University of Birmingham

6th July 2010
1. What is submodularity?
2. Non-myopic maximisation of information gain
3. Path planning
4. Robust maximisation and minimisation
5. Summary

* These slides are borrowed from Andreas Krause and Carlos Guestrin (see http://www.submodularity.org/)
Set functions

- Submodularity in AI has been popularised by Andreas Krause and Carlos Guestrin
- Finite set $V = \{1, 2, \ldots, n\}$
- Function $F: 2^V \Rightarrow \mathbb{R}$
- Example: $F(A) = IG(X_A; Y) = H(Y) - H(Y | X_A)
 = \sum_{y, x_A} P(x_A) \left[\log P(y | x_A) - \log P(y) \right]$

Example
- $F(\{X_1, X_2\}) = 0.9$
- $F(\{X_2, X_3\}) = 0.5$

- Graphical representation:
 - Y ("Sick")
 - X_1 ("Fever")
 - X_2 ("Rash")
 - X_3 ("Male")

- $F(\{X_1, X_2\}) = 0.9$
- $F(\{X_2, X_3\}) = 0.5$
Set function F on V is called submodular if

For all $A, B \subseteq V$: $F(A) + F(B) \geq F(A \cup B) + F(A \cap B)$

Equivalent diminishing returns characterization:

Submodularity:

For $A \subseteq B$, $s \notin B$, $F(A \cup \{s\}) - F(A) \geq F(B \cup \{s\}) - F(B)$
Example problem: sensor coverage

Place sensors in building

Possible locations V

Node predicts values of positions with some radius

For $A \subseteq V$: $F(A)$ = “area covered by sensors placed at A”

Formally:

W finite set, collection of n subsets $S_i \subseteq W$

For $A \subseteq V = \{1, \ldots, n\}$ define $F(A) = |\bigcup_{i \in A} S_i|$
Set coverage is submodular

\[A = \{ S_1, S_2 \} \]

\[F(A \cup \{ S' \}) - F(A) \geq F(B \cup \{ S' \}) - F(B) \]

\[B = \{ S_1, S_2, S_3, S_4 \} \]
Approximate maximization

Given: finite set V, monotonic submodular function $F(A)$

Want: $A^* \subseteq V$ such that

$$A^* = \arg \max_{\mathcal{A}} F(\mathcal{A})$$

$|\mathcal{A}| \leq k$

NP-hard!

Greedy algorithm:

Start with $A_0 = \{\}$;

For $i = 1$ to k

$$s_i := \arg \max_s F(A_{i-1} \cup \{s\}) - F(A_{i-1})$$

$$A_i := A_{i-1} \cup \{s_i\}$$
Theorem [Nemhauser et al ‘78]

Given a monotonic submodular function F, $F(\emptyset) = 0$, the greedy maximization algorithm returns A_{greedy}

$$F(A_{\text{greedy}}) \geq (1 - 1/e) \max_{|A| \leq k} F(A)$$

- **Sidenote:** Greedy algorithm gives $1/2$ approximation for maximization over any matroid C! [Fisher et al ’78]
Example: Submodularity of info-gain

\[Y_1, \ldots, Y_m, X_1, \ldots, X_n \text{ discrete RVs} \]
\[F(A) = IG(Y; X_A) = H(Y) - H(Y | X_A) \]

- \(F(A) \) is always monotonic
- However, NOT always submodular

Theorem [Krause & Guestrin UAI’ 05]
If \(X_i \) are all conditionally independent given \(Y \), then \(F(A) \) is submodular!

Hence, greedy algorithm works!

In fact, NO practical algorithm can do better than \((1 - 1/e)\) approximation!
Information gain with cost

- Instead of each sensor having the same measurement cost, variable cost $C(X)$ for each node

- Aim: $\max F(A)$ s.t. $C(A) \leq B$

 where $C(A) = \sum_{X \in A} C(X)$

- In this case, construct every possible 3-element subset of V, and run greedy algorithm on each

- Greedy algorithm selects additional nodes X by maximising

 $$\frac{F(A \cup X) - F(A)}{C(X)}$$

- Finally choose best set A

- Maintains $(1 - 1/e)$ approximation guarantee
Path planning

$max_A F(A)$ or $max_A min_i F_i(A)$ subject to

- So far: $|A| \leq k$
- In practice, more complex constraints:

Locations need to be connected by paths
[Chekuri & Pal, FOCS '05]
[Singh et al, IJCAI '07]

Sensors need to communicate (form a routing tree)
[Krause et al., IPSN 06]

Lake monitoring

Building monitoring
Informative path planning

So far:
\[
\max F(A) \quad \text{s.t.} \quad |A| \leq k
\]

Most informative locations might be far apart!

Robot needs to travel between selected locations

Locations \(V \) nodes in a graph
\[
C(A) = \text{cost of cheapest path connecting nodes} \ A
\]

\[
\max F(A) \quad \text{s.t.} \quad C(A) \leq B
\]
The **pSPIEL** Algorithm [K, Guestrin, Gupta, Kleinberg IPSN ‘06]

- **pSPIEL**: Efficient **nonmyopic** algorithm
 (padded Sensor Placements at Informative and cost-Effective Locations)
 - Select **starting** and **ending** location s_1 and s_B
 - **Decompose** sensing region into small, well-separated clusters
 - Solve cardinality constrained problem **per cluster** (greedy)
 - **Combine** solutions using orienteering algorithm
 - Smooth resulting path
Limitations of pSPEIL

- Requires locality property – far apart observations are independent
- Adaptive algorithm [Singh, Krause, Kaiser IJCAI‘09]
 - Just re-plans on every timestep
 - Often this is near-optimal; if it isn’t, have to add an adaptivity gap term to the objective function U to encourage exploration
Submodular optimisation spectrum

- **Maximization:** $A^* = \arg\max F(A)$
 - Sensor placement
 - Informative path planning
 - Active learning
 - …

- **Optimise for worst case:** $A^* = \arg\max \min_i F_i(A)$ with $|A| \leq k$

- **Minimization:** $A^* = \arg\min F(A)$
 - Structure learning ($A^* = \arg\min I(X_A; X_{V\setminus A})$)
 - Clustering
 - MAP inference in Markov Random Fields
Submodularity is useful!