Robot Mapping

IR Lab, 16th Oct 2007

Zeyn Saigol
Outline

1. Introduction
2. Occupancy Grids
 - Forward vs. Inverse Models
 - Update Rule
 - Issues and Limitations
3. Kalman Filters
4. SLAM and Particle Filters
Introduction

• Aim is to build a map of the local environment of the robot
• Wide variety of sensors are used, with different characteristics (e.g. sonar, laser, IR, cameras)
• The robot may not have perfect knowledge of its own position. Estimating the map and the pose together is known as SLAM (Simultaneous Localisation And Mapping)
• Probabilistic methods have proved very effective for mapping, and have been universally adopted
Introduction / cont’d

• Map can be of obstacles (walls), or of features (e.g. landmarks, hydrothermal vents)
 Map landmarks => limited dimensionality (but still high)
 Map obstacles => very high dimensional

• Static World assumption
 Mapping is made much simpler by assuming that the map \(m \) is fixed, and is completely responsible for sensor readings \(z \):
 \[
P(z_{t+1} \mid z_{1:t}, m) = P(z_{t+1} \mid m)
 \]
Occupancy Grids

- Developed by Hans Moravec and Alberto Elfes at CMU in the 1980s
- Search area is split into cells
- $m_{x,y}$ - cell at $\langle x, y \rangle$ is occupied
- $\bar{m}_{x,y}$ - cell at $\langle x, y \rangle$ is empty
- Originally developed for sonar
- Use a Bayesian update rule to find the odds ratio
- Estimate $P(m_{x,y} | z_{1:t})$ *independently* for each cell
Forward and Inverse Models

- Probabilistic mapping requires a sensor model
- Sensors are naturally described by a generative or forward model, giving \(P(\text{reading} | \text{true-distance}) \), \(P(z | x) \)
- Occupancy grids need an inverse model, \(P(m_x | z) \)
Occupancy Grid Updates

- Iterative update
 \[
P[m_{x,y} | z_{1:t+1}] = \frac{P[z_{t+1} | m_{x,y}]P[m_{x,y} | z_{1:t}]}{P[z_{1:t}]}\]

- Calculate posterior odds ratio, \(\frac{P[m_{x,y} | z_{1:t+1}]}{P[m_{x,y} | z_{1:t+1}]} \), to avoid needing to know \(P[z_{1:t}] \)

- Prior for each cell normally [0.2, 0.5]

- “After ten years of development, the Cart program was still unreliable at crossing a room, but the very first grid program succeeded every time” (Martin and Moravec, 1996)
OG Issues

- **Robot pose**
 The OG method requires exact knowledge of the location of the sensor at all points

- **Independency assumption**
 The OG update rule assumes that sensor readings are conditionally independent given knowledge of a single cell:

\[
P[z_{t+1} \mid z_{1:t}, m_{x,y}] = P[z_{t+1} \mid m_{x,y}]
\]
Dynamic Systems

- Want to model the robot’s motion => state x_t must evolve
- Hidden Markov Models, HMMs

- Governed by two distributions
 1. State transition function or motion model, $P(x_{t+1} | x_t, a_t)$
 2. Observation or sensor model, $P(z_t | x_t)$
Kalman Filters 1

- Extension of HMMs to continuous states and observations, originally used for tracking moving objects
- Can also be used for estimating any hidden state, including a map m and robot pose s: $x_t = (s_t, m)^T$
- Both the motion and sensor models are linear with additive Gaussian noise
 $$z_t = Cx_t + v_t \quad v_t \sim N(0, R)$$
 $$s_{t+1} = As_t + Gw_t \quad w_t \sim N(0, Q)$$
- Initial conditions must have Gaussian uncertainty
- Given these, $P(x_t | z_{1:t})$ is also Gaussian, and there is an analytic solution for its mean and covariance
Kalman Filters 2

- Analytic solution comes from Bayesian update equation:
 \[
P(s_{t+1}, \mathbf{m} \mid z_{1:t+1}, a_{1:t})
 = \alpha P(z_{t+1} \mid s_{t+1}, \mathbf{m}) \int P(s_{t+1} \mid s_t, a_t) P(s_t, \mathbf{m} \mid z_{1:t}, a_{1:t-1}) ds_t
 \]

- In practice, motion and sensor models are usually significantly nonlinear

- Therefore, Extended Kalman Filters (EKF) are frequently used in real mapping problems

- EKF works by linearising the models about each point, using the first few terms in a Taylor expansion
SLAM

• The SLAM problem: attempt to reduce the correlated errors in robot pose and map by estimating both simultaneously
• When a previously-observed feature is seen again, the uncertainty over pose is reduced, and therefore the uncertainty over new feature locations is also reduced
• EKFs have been widely and successfully used for SLAM
• However, posterior over map and pose is Gaussian
• Also relies on known, identifiable landmarks (the correspondence problem)
Particle Filter-based SLAM

- Solve Gaussian posterior issue by using a particle filter
- However, number of particles needed is exponential in the number of dimensions
- ... and mapping is very high dimensional
- Solution: Use particles to track robot’s pose, and associate a Kalman filter with each particle to estimate the map
- Essentially Rao-Blackwellization (Sebastian Thrun’s FastSLAM, e.g. Simultaneous Localisation and Mapping with Unknown Data Association Using FastSLAM, Montemerlo and Thrun, ICRA 2003)
Summary

• Occupancy grids good for generating complete maps, given accurate localisation of the robot
• SLAM problem commonly solved by EKFs, or a combined EKF/particle filters method
• Other major technique is EM (slightly complicated)
• EM is an iterative procedure to find the maximum likelihood solution by searching over possible maps
• RatSLAM seems to use non-Cartesian grid, where connections between visitable points are more important than absolute location